Homogenization of the Ginzburg-landau Equation in a Domain with Oscillating Boundary
نویسندگان
چکیده
We study the asymptotic behaviour, as h tends to +∞, of the nonlinear system: −∆uh − uh + |uh|uh = f in Ωh, Duh · ν = 0 on ∂Ωh, uh : Ωh → R2, in a varying domain Ωh in R2. The boundary ∂Ωh contains an oscillating part like a comb with fine teeth periodically distributed in the first direction 0x1 with period h−1 and thickness λh−1, 0 < λ < 1. We identify the limit problem where the operator −∆ is reduced to − ∂ 2 ∂x2 in the domain corresponding to the oscillating boundary. AMS (MOS) Subject Classification. 35B27, 35Q55, 58E50.
منابع مشابه
Exact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملPinning phenomena in the Ginzburg-Landau Model of Superconductivity
We study the Ginzburg-Landau energy of superconductors with a term aε modelling the pinning of vortices by impurities in the limit of a large Ginzburg-Landau parameter κ = 1/ε. The function aε is oscillating between 1/2 and 1 with a scale which may tend to 0 as κ tends to infinity. Our aim is to understand that in the large κ limit, stable configurations should correspond to vortices pinned at ...
متن کاملPeriodic Unfolding and Homogenization for the Ginzburg-landau Equation Preliminary Draft
We investigate, on a bounded domain Ω of R with fixed S-valued boundary condition g of degree d > 0, the asymptotic behaviour of solutions uε,δ of a class of Ginzburg-Landau equations driven by two parameter : the usual Ginzburg-Landau parameter, denoted ε, and the scale parameter δ of a geometry provided by a field of 2 × 2 positive definite matrices x → A( δ ). The field R ∋ x → A(x) is of cl...
متن کاملBoundary problems for the Ginzburg-Landau equation
We provide a study at the boundary for a class of equation including the Ginzburg-Landau equation as well as the equation of travelling waves for the Gross-Pitaevskii model. We prove Clearing-Out results and an orthogonal anchoring condition of the vortex on the boundary for the Ginzburg-Landau equation with magnetic field.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013